A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
نویسندگان
چکیده
منابع مشابه
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into ...
متن کاملQuasi-Lie schemes and Emden–Fowler equations
The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from t...
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملSome Second-order Partial Differential Equations Associated with Lie Groups
In this note we survey results in recent research papers on the use of Lie groups in the study of partial differential equations. The focus will be on parabolic equations, and we will show how the problems at hand have solutions that seem natural in the context of Lie groups. The research is joint with D.W. Robinson, as well as other researchers who are listed in the references.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications
سال: 2013
ISSN: 1815-0659
DOI: 10.3842/sigma.2013.026